skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malliaras, George_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion‐conducting membrane out to the local implanted area. This solvent‐flow‐free “dry” delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co‐ion is presented. By switching acetylcholine's associated co‐ion from chloride to carboxylate co‐ions as well as sulfopropyl acrylate‐based polyanions, steady‐state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices. 
    more » « less
  2. Abstract Low‐cost biosensors that can rapidly and widely monitor plant nutritional levels will be critical for better understanding plant health and improving precision agriculture decision making. In this work, fully printed ion‐selective organic electrochemical transistors (OECTs) that can detect macronutrient concentrations in whole plant sap are described. Potassium, the most concentrated cation in the majority of plants, is selected as the target analyte as it plays a critical role in plant growth and development. The ion sensors demonstrate high current (170 µA dec−1) and voltage (99 mV dec−1) sensitivity, and a low limit of detection (10 × 10−6 m). These OECT biosensors can be used to determine potassium concentration in raw sap and sap‐like aqueous environments demonstrating a log‐linear response within the expected physiological range of cations in plants. The performance of these printed devices enables their use in high‐throughput plant health monitoring in agricultural and ecological applications. 
    more » « less